Artwork

Sisällön tarjoaa multimidiavillage. multimidiavillage tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

Células solares mais eficientes.

2:38
 
Jaa
 

Manage episode 313125808 series 3259842
Sisällön tarjoaa multimidiavillage. multimidiavillage tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Em apenas dez anos de pesquisa, as células solares de perovskitas tornaram-se competitivas em termos de eficiência. Atualmente, sabe-se que a sua capacidade de converter luz em eletricidade é maior ainda quando elas são empilhadas em cima de células solares de silício, formando uma junção de dispositivos chamada “tandem”. Contudo, esses bons resultados correspondem geralmente a dispositivos pequenos, usados para pesquisa em laboratório. Conseguir produzir grandes áreas de perovskitas sem prejudicar a eficiência ainda é um desafio. A perovskita propriamente dita é um óxido de cálcio e titânio3. Foi descoberta nos montes Urais, na Rússia, em 1839. E recebeu esse nome em homenagem ao mineralogista russo Lev Perovski (1792-1856), ministro do Czar Nicolau I. Para se obter perovskitas pelo método de gas quenching, o primeiro passo consiste em depositar, sobre um suporte, uma solução contendo os compostos precursores da perovskita. Quando o solvente evapora, o material cristaliza e forma a organizada estrutura própria das perovskitas. Na preparação das soluções iniciais, a equipe de pesquisadores utilizou dois solventes diferentes combinados com diversos precursores e observou que cada combinação leva a um caminho único de formação de intermediários, o que impacta na morfologia e nas propriedades finais da perovskita, bem como na sua eficiência dentro das células solares.

Study paves the way for the development of more efficient solar cells. In just ten years of research, perovskite solar cells have become competitive in terms of efficiency. Currently, it is known that their ability to convert light into electricity is even greater when they are stacked on top of silicon solar cells, forming a junction of devices called “tandem”. However, these good results generally correspond to small devices, used for laboratory research. Managing to produce large areas of perovskite without impairing efficiency is still a challenge. Perovskite itself is a calcium and titanium oxide3. It was discovered in the Ural Mountains in Russia in 1839. It was named after the Russian mineralogist Lev Perovski (1792-1856), Minister of Czar Nicholas I. To obtain perovskites by the gas quenching method, the first step is to deposit, on a support, a solution containing the precursor compounds of perovskite. When the solvent evaporates, the material crystallizes and forms the organized perovskite structure. However, before this happens, several compounds with different structures (so-called “intermediates”) are formed momentarily. In the preparation of the initial solutions, the research team used two different solvents combined with different precursors and observed that each combination leads to a unique path of formation of intermediates, which impacts on the morphology and final properties of perovskite, as well as on its efficiency inside the solar cells. In addition to providing valuable information on the formation of perovskites by gas quenching, the results of the research help in choosing the best solvent to obtain better perovskite films for solar cells, including those of the tandem type.

Fonte/Source (créditos): O artigo Revealing the Perovskite Film Formation Using the Gas Quenching Method by In Situ GIWAXS: Morphology, Properties, and Device Performance, de Rodrigo Szostak, Sandy Sanchez, Paulo E. Marchezi, Adriano S. Marques, Jeann C. Silva, Matheus S. Holanda, Anders Hagfeldt, Hélio C. N. Tolentino e Ana F. Nogueira, pode ser lido em: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202007473

https://agencia.fapesp.br/estudo-abre-caminho-para-o-desenvolvimento-de-celulas-solares-mais-eficientes/34734/

--- Send in a voice message: https://podcasters.spotify.com/pod/show/multimidiavillage/message
  continue reading

158 jaksoa

Artwork
iconJaa
 
Manage episode 313125808 series 3259842
Sisällön tarjoaa multimidiavillage. multimidiavillage tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Em apenas dez anos de pesquisa, as células solares de perovskitas tornaram-se competitivas em termos de eficiência. Atualmente, sabe-se que a sua capacidade de converter luz em eletricidade é maior ainda quando elas são empilhadas em cima de células solares de silício, formando uma junção de dispositivos chamada “tandem”. Contudo, esses bons resultados correspondem geralmente a dispositivos pequenos, usados para pesquisa em laboratório. Conseguir produzir grandes áreas de perovskitas sem prejudicar a eficiência ainda é um desafio. A perovskita propriamente dita é um óxido de cálcio e titânio3. Foi descoberta nos montes Urais, na Rússia, em 1839. E recebeu esse nome em homenagem ao mineralogista russo Lev Perovski (1792-1856), ministro do Czar Nicolau I. Para se obter perovskitas pelo método de gas quenching, o primeiro passo consiste em depositar, sobre um suporte, uma solução contendo os compostos precursores da perovskita. Quando o solvente evapora, o material cristaliza e forma a organizada estrutura própria das perovskitas. Na preparação das soluções iniciais, a equipe de pesquisadores utilizou dois solventes diferentes combinados com diversos precursores e observou que cada combinação leva a um caminho único de formação de intermediários, o que impacta na morfologia e nas propriedades finais da perovskita, bem como na sua eficiência dentro das células solares.

Study paves the way for the development of more efficient solar cells. In just ten years of research, perovskite solar cells have become competitive in terms of efficiency. Currently, it is known that their ability to convert light into electricity is even greater when they are stacked on top of silicon solar cells, forming a junction of devices called “tandem”. However, these good results generally correspond to small devices, used for laboratory research. Managing to produce large areas of perovskite without impairing efficiency is still a challenge. Perovskite itself is a calcium and titanium oxide3. It was discovered in the Ural Mountains in Russia in 1839. It was named after the Russian mineralogist Lev Perovski (1792-1856), Minister of Czar Nicholas I. To obtain perovskites by the gas quenching method, the first step is to deposit, on a support, a solution containing the precursor compounds of perovskite. When the solvent evaporates, the material crystallizes and forms the organized perovskite structure. However, before this happens, several compounds with different structures (so-called “intermediates”) are formed momentarily. In the preparation of the initial solutions, the research team used two different solvents combined with different precursors and observed that each combination leads to a unique path of formation of intermediates, which impacts on the morphology and final properties of perovskite, as well as on its efficiency inside the solar cells. In addition to providing valuable information on the formation of perovskites by gas quenching, the results of the research help in choosing the best solvent to obtain better perovskite films for solar cells, including those of the tandem type.

Fonte/Source (créditos): O artigo Revealing the Perovskite Film Formation Using the Gas Quenching Method by In Situ GIWAXS: Morphology, Properties, and Device Performance, de Rodrigo Szostak, Sandy Sanchez, Paulo E. Marchezi, Adriano S. Marques, Jeann C. Silva, Matheus S. Holanda, Anders Hagfeldt, Hélio C. N. Tolentino e Ana F. Nogueira, pode ser lido em: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202007473

https://agencia.fapesp.br/estudo-abre-caminho-para-o-desenvolvimento-de-celulas-solares-mais-eficientes/34734/

--- Send in a voice message: https://podcasters.spotify.com/pod/show/multimidiavillage/message
  continue reading

158 jaksoa

Kaikki jaksot

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas