Artwork

Sisällön tarjoaa Hugo Bowne-Anderson. Hugo Bowne-Anderson tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

Episode 61: The AI Agent Reliability Cliff: What Happens When Tools Fail in Production

28:04
 
Jaa
 

Manage episode 514005909 series 3317544
Sisällön tarjoaa Hugo Bowne-Anderson. Hugo Bowne-Anderson tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Most AI teams find their multi-agent systems devolving into chaos, but ML Engineer Alex Strick van Linschoten argues they are ignoring the production reality. In this episode, he draws on insights from the LLM Ops Database (750+ real-world deployments then; now nearly 1,000!) to systematically measure and engineer constraint, turning unreliable prototypes into robust, enterprise-ready AI.

Drawing from his work at Zen ML, Alex details why success requires scaling down and enforcing MLOps discipline to navigate the unpredictable "Agent Reliability Cliff". He provides the essential architectural shifts, evaluation hygiene techniques, and practical steps needed to move beyond guesswork and build scalable, trustworthy AI products.

We talk through:

  • Why "shoving a thousand agents" into an app is the fastest route to unmanageable chaos
  • The essential MLOps hygiene (tracing and continuous evals) that most teams skip
  • The optimal (and very low) limit for the number of tools an agent can reliably use
  • How to use human-in-the-loop strategies to manage the risk of autonomous failure in high-sensitivity domains
  • The principle of using simple Python/RegEx before resorting to costly LLM judges

LINKS

🎓 Learn more:

-This was a guest Q&A from Building LLM Applications for Data Scientists and Software Engineershttps://maven.com/hugo-stefan/building-llm-apps-ds-and-swe-from-first-principles?promoCode=AI20

Next cohort starts November 3: come build with us!

  continue reading

64 jaksoa

Artwork
iconJaa
 
Manage episode 514005909 series 3317544
Sisällön tarjoaa Hugo Bowne-Anderson. Hugo Bowne-Anderson tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Most AI teams find their multi-agent systems devolving into chaos, but ML Engineer Alex Strick van Linschoten argues they are ignoring the production reality. In this episode, he draws on insights from the LLM Ops Database (750+ real-world deployments then; now nearly 1,000!) to systematically measure and engineer constraint, turning unreliable prototypes into robust, enterprise-ready AI.

Drawing from his work at Zen ML, Alex details why success requires scaling down and enforcing MLOps discipline to navigate the unpredictable "Agent Reliability Cliff". He provides the essential architectural shifts, evaluation hygiene techniques, and practical steps needed to move beyond guesswork and build scalable, trustworthy AI products.

We talk through:

  • Why "shoving a thousand agents" into an app is the fastest route to unmanageable chaos
  • The essential MLOps hygiene (tracing and continuous evals) that most teams skip
  • The optimal (and very low) limit for the number of tools an agent can reliably use
  • How to use human-in-the-loop strategies to manage the risk of autonomous failure in high-sensitivity domains
  • The principle of using simple Python/RegEx before resorting to costly LLM judges

LINKS

🎓 Learn more:

-This was a guest Q&A from Building LLM Applications for Data Scientists and Software Engineershttps://maven.com/hugo-stefan/building-llm-apps-ds-and-swe-from-first-principles?promoCode=AI20

Next cohort starts November 3: come build with us!

  continue reading

64 jaksoa

Tüm bölümler

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas

Tekijänoikeudet 2025 | Tietosuojakäytäntö | Käyttöehdot | | Tekijänoikeus
Kuuntele tämä ohjelma tutkiessasi
Toista