Artwork

Sisällön tarjoaa Hugo Bowne-Anderson. Hugo Bowne-Anderson tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

Episode 63: Why Gemini 3 Will Change How You Build AI Agents with Ravin Kumar (Google DeepMind)

1:00:12
 
Jaa
 

Manage episode 520612127 series 3317544
Sisällön tarjoaa Hugo Bowne-Anderson. Hugo Bowne-Anderson tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Gemini 3 is a few days old and the massive leap in performance and model reasoning has big implications for builders: as models begin to self-heal, builders are literally tearing out the functionality they built just months ago... ripping out the defensive coding and reshipping their agent harnesses entirely.

Ravin Kumar (Google DeepMind) joins Hugo to breaks down exactly why the rapid evolution of models like Gemini 3 is changing how we build software. They detail the shift from simple tool calling to building reliable "Agent Harnesses", explore the architectural tradeoffs between deterministic workflows and high-agency systems, the nuance of preventing context rot in massive windows, and why proper evaluation infrastructure is the only way to manage the chaos of autonomous loops.

They talk through:

  • The implications of models that can "self-heal" and fix their own code
  • The two cultures of agents: LLM workflows with a few tools versus when you should unleash high-agency, autonomous systems.
  • Inside NotebookLM: moving from prototypes to viral production features like Audio Overviews
  • Why Needle in a Haystack benchmarks often fail to predict real-world performance
  • How to build agent harnesses that turn model capabilities into product velocity
  • The shift from measuring latency to managing time-to-compute for reasoning tasks

LINKS

Join the final cohort of our Building AI Applications course starting Jan 12, 2026: https://maven.com/hugo-stefan/building-ai-apps-ds-and-swe-from-first-principles?promoCode=vgrav

  continue reading

64 jaksoa

Artwork
iconJaa
 
Manage episode 520612127 series 3317544
Sisällön tarjoaa Hugo Bowne-Anderson. Hugo Bowne-Anderson tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Gemini 3 is a few days old and the massive leap in performance and model reasoning has big implications for builders: as models begin to self-heal, builders are literally tearing out the functionality they built just months ago... ripping out the defensive coding and reshipping their agent harnesses entirely.

Ravin Kumar (Google DeepMind) joins Hugo to breaks down exactly why the rapid evolution of models like Gemini 3 is changing how we build software. They detail the shift from simple tool calling to building reliable "Agent Harnesses", explore the architectural tradeoffs between deterministic workflows and high-agency systems, the nuance of preventing context rot in massive windows, and why proper evaluation infrastructure is the only way to manage the chaos of autonomous loops.

They talk through:

  • The implications of models that can "self-heal" and fix their own code
  • The two cultures of agents: LLM workflows with a few tools versus when you should unleash high-agency, autonomous systems.
  • Inside NotebookLM: moving from prototypes to viral production features like Audio Overviews
  • Why Needle in a Haystack benchmarks often fail to predict real-world performance
  • How to build agent harnesses that turn model capabilities into product velocity
  • The shift from measuring latency to managing time-to-compute for reasoning tasks

LINKS

Join the final cohort of our Building AI Applications course starting Jan 12, 2026: https://maven.com/hugo-stefan/building-ai-apps-ds-and-swe-from-first-principles?promoCode=vgrav

  continue reading

64 jaksoa

Kaikki jaksot

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas

Tekijänoikeudet 2025 | Tietosuojakäytäntö | Käyttöehdot | | Tekijänoikeus
Kuuntele tämä ohjelma tutkiessasi
Toista