Artwork

Sisällön tarjoaa The FinOps Guys - Stephen Old and Frank Contrepois, The FinOps Guys - Stephen Old, and Frank Contrepois. The FinOps Guys - Stephen Old and Frank Contrepois, The FinOps Guys - Stephen Old, and Frank Contrepois tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

WNiCF - Interview with Henk - Time series, forecasts and anomaly detections, all hard problems to crack.

38:12
 
Jaa
 

Manage episode 470863788 series 3553457
Sisällön tarjoaa The FinOps Guys - Stephen Old and Frank Contrepois, The FinOps Guys - Stephen Old, and Frank Contrepois. The FinOps Guys - Stephen Old and Frank Contrepois, The FinOps Guys - Stephen Old, and Frank Contrepois tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Send us a text

  • We discussed the challenges of working with time series data, particularly in the context of machine learning and AI, highlighting the complexity and the need for automation in feature engineering.
  • The importance of balancing accuracy and complexity in model creation was emphasized, with a focus on avoiding overfitting and ensuring models remain effective in real-world applications.
  • The potential integration of business context data, such as sales data, with cloud consumption data to enhance anomaly detection and forecasting models was proposed.
  • The discussion touched on the economic value of anomaly detection, with a focus on proving that early detection can lead to significant cost savings.
  • The target audience for the anomaly detection system was identified as FinOps managers, who would use the system to manage cloud-related financial topics and coordinate with engineers to address anomalies.

  continue reading

82 jaksoa

Artwork
iconJaa
 
Manage episode 470863788 series 3553457
Sisällön tarjoaa The FinOps Guys - Stephen Old and Frank Contrepois, The FinOps Guys - Stephen Old, and Frank Contrepois. The FinOps Guys - Stephen Old and Frank Contrepois, The FinOps Guys - Stephen Old, and Frank Contrepois tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Send us a text

  • We discussed the challenges of working with time series data, particularly in the context of machine learning and AI, highlighting the complexity and the need for automation in feature engineering.
  • The importance of balancing accuracy and complexity in model creation was emphasized, with a focus on avoiding overfitting and ensuring models remain effective in real-world applications.
  • The potential integration of business context data, such as sales data, with cloud consumption data to enhance anomaly detection and forecasting models was proposed.
  • The discussion touched on the economic value of anomaly detection, with a focus on proving that early detection can lead to significant cost savings.
  • The target audience for the anomaly detection system was identified as FinOps managers, who would use the system to manage cloud-related financial topics and coordinate with engineers to address anomalies.

  continue reading

82 jaksoa

Kaikki jaksot

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas

Kuuntele tämä ohjelma tutkiessasi
Toista