Artwork

Sisällön tarjoaa Felipe Flores. Felipe Flores tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

#198 Building Sophistication Into ML Ops Starts With The Strategic Vision, with Mia O’Dell, the GM of Data Science at Sportsbet

38:42
 
Jaa
 

Manage episode 334871135 series 2310475
Sisällön tarjoaa Felipe Flores. Felipe Flores tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Online wagering is one of the most sophisticated and complex fields for data and analytics. This week on the Data Futurology podcast, Mia O’Dell, the GM of Data Science at Sportsbet, kicks thing off by explaining how the company brings together three separate data teams, across three lines of business, to achieve meaningful and collaborative data outcomes.

Sportsbet is also growing its data practice and looking to nearly double its team sizes by the end of the year. O’Dell – who was also responsible for scaling the data practice in a previous organisation – also shares some insights about how to approach data scaling. There’s no “one size fits all” approach, she says. Success depends on being able to work with the teams to come up with a strong and compelling vision.

Finally, O’Dell also shares her concept of “machine learning offense” and “machine learning defence” as a way to help articulate the value of ML Ops at a time where non-data executives within enterprises are still struggling to understand the breakdown and operation of ML Ops teams.

It’s also important to understand where and when ML Ops becomes important to a business, O’Dell adds, saying that a lot of organisations make the mistake of going all-out when they’re just at the start of the journey, where the value of ML Ops will be marginal and difficult to articulate.

“If your first machine learning model is something that’s extremely critical to the success of the business, of course you want to over invest in its reliance,” she says. “But for something that isn’t necessarily core to the business, ML Ops can result in putting far too much effort on the defensive side, and not enough yet on the offensive side.”

Tune in for in-depth insights into this, and more, with Mia O’Dell.

Enjoy the show!

Thank you to you our sponsor, Talent Insights Group!

Join us for one of our upcoming events: https://www.datafuturology.com/events

Join our Slack Community: https://hubs.li/Q01gKNBn0

Read the full podcast episode summary here.

  continue reading

268 jaksoa

Artwork
iconJaa
 
Manage episode 334871135 series 2310475
Sisällön tarjoaa Felipe Flores. Felipe Flores tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Online wagering is one of the most sophisticated and complex fields for data and analytics. This week on the Data Futurology podcast, Mia O’Dell, the GM of Data Science at Sportsbet, kicks thing off by explaining how the company brings together three separate data teams, across three lines of business, to achieve meaningful and collaborative data outcomes.

Sportsbet is also growing its data practice and looking to nearly double its team sizes by the end of the year. O’Dell – who was also responsible for scaling the data practice in a previous organisation – also shares some insights about how to approach data scaling. There’s no “one size fits all” approach, she says. Success depends on being able to work with the teams to come up with a strong and compelling vision.

Finally, O’Dell also shares her concept of “machine learning offense” and “machine learning defence” as a way to help articulate the value of ML Ops at a time where non-data executives within enterprises are still struggling to understand the breakdown and operation of ML Ops teams.

It’s also important to understand where and when ML Ops becomes important to a business, O’Dell adds, saying that a lot of organisations make the mistake of going all-out when they’re just at the start of the journey, where the value of ML Ops will be marginal and difficult to articulate.

“If your first machine learning model is something that’s extremely critical to the success of the business, of course you want to over invest in its reliance,” she says. “But for something that isn’t necessarily core to the business, ML Ops can result in putting far too much effort on the defensive side, and not enough yet on the offensive side.”

Tune in for in-depth insights into this, and more, with Mia O’Dell.

Enjoy the show!

Thank you to you our sponsor, Talent Insights Group!

Join us for one of our upcoming events: https://www.datafuturology.com/events

Join our Slack Community: https://hubs.li/Q01gKNBn0

Read the full podcast episode summary here.

  continue reading

268 jaksoa

Wszystkie odcinki

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas

Tekijänoikeudet 2025 | Tietosuojakäytäntö | Käyttöehdot | | Tekijänoikeus
Kuuntele tämä ohjelma tutkiessasi
Toista