Artwork

Sisällön tarjoaa Aiven. Aiven tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

Hot and cold data with Apache Kafka, Tiered Storage, and Iceberg

48:58
 
Jaa
 

Manage episode 429150924 series 3575842
Sisällön tarjoaa Aiven. Aiven tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Utilizing the true potential of data streaming is key to business success.

In this Data (R)evolution episode, we're joined by Josep Prat and Filip Yonov to dive into the transformative features of Apache Kafka and its evolving role in data architecture. They discuss the critical importance of collaboration and feedback in enhancing Kafka's capabilities, the future of "lake house" technology, exciting updates from the Open Source Program Office (OSPO), and the importance of Kafka's readiness to support evolving data formats—making it a backbone for modern data ecosystems.

Key Takeaways:

  1. Community collaboration and contribution are essential for the continuous improvement and testing of Apache Kafka's capabilities
  2. The evolution of Apache Kafka into a more versatile platform, combined with object storage and open table formats, can significantly enhance real-time data streaming, analytics, and the future of "lake house" technology
  3. Tiered storage in Kafka facilitates more efficient and cost-effective data management by decoupling storage from computing

Resources:

Timestamps:

[05:49] Kafka servers have theoretical storage limits

[09:29] Test storage proposal process for Apache Kafka

[17:38] LinkedIn conducted an experiment merging Xcode versions

[22:11] Data lake evolving into lake house architectures

[25:00] Broker pushes data to remote storage, plugin handles retrieval and format translation

[26:40] Kafka excels at high-speed, high-volume data

[32:18] Kafka data consumption evolving with new options

[40:19] Managing metadata for conversion on community level

[47:45] Kafka's potential as a widely used API

  continue reading

11 jaksoa

Artwork
iconJaa
 
Manage episode 429150924 series 3575842
Sisällön tarjoaa Aiven. Aiven tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Utilizing the true potential of data streaming is key to business success.

In this Data (R)evolution episode, we're joined by Josep Prat and Filip Yonov to dive into the transformative features of Apache Kafka and its evolving role in data architecture. They discuss the critical importance of collaboration and feedback in enhancing Kafka's capabilities, the future of "lake house" technology, exciting updates from the Open Source Program Office (OSPO), and the importance of Kafka's readiness to support evolving data formats—making it a backbone for modern data ecosystems.

Key Takeaways:

  1. Community collaboration and contribution are essential for the continuous improvement and testing of Apache Kafka's capabilities
  2. The evolution of Apache Kafka into a more versatile platform, combined with object storage and open table formats, can significantly enhance real-time data streaming, analytics, and the future of "lake house" technology
  3. Tiered storage in Kafka facilitates more efficient and cost-effective data management by decoupling storage from computing

Resources:

Timestamps:

[05:49] Kafka servers have theoretical storage limits

[09:29] Test storage proposal process for Apache Kafka

[17:38] LinkedIn conducted an experiment merging Xcode versions

[22:11] Data lake evolving into lake house architectures

[25:00] Broker pushes data to remote storage, plugin handles retrieval and format translation

[26:40] Kafka excels at high-speed, high-volume data

[32:18] Kafka data consumption evolving with new options

[40:19] Managing metadata for conversion on community level

[47:45] Kafka's potential as a widely used API

  continue reading

11 jaksoa

Kaikki jaksot

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas