Artwork

Sisällön tarjoaa kathrynj2. kathrynj2 tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

Sentiment Analysis of Financial Text Using Quantum Language Processing

17:56
 
Jaa
 

Manage episode 522484969 series 3655012
Sisällön tarjoaa kathrynj2. kathrynj2 tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

This episode discusses the research paper, "Hybrid Quantum Circuits for Interpretable Financial Sentiment.” The study applies the Quantum Distributional Compositional Circuit (QDisCoCirc) framework to perform three-class sentiment analysis on financial texts, motivated by the need for greater mechanistic interpretability than offered by traditional Large Language Models. The methodology involves segmenting sentences into short, independent chunks, each generating a semantic Bloch vector representation via classical quantum simulation. To capture syntactic context and word order missed by simple aggregation, the core contribution is a hybrid model that feeds the vector sequence into a shallow Transformer encoder, leveraging Combinatory Categorial Grammar (CCG) type embeddings to explicitly model grammatical structure. This sequence model yields higher predictive performance and allows for the quantitative tracking of contributions from both semantic and syntactic information channels. Finally, the research introduces novel interventional explanation metrics to validate the causal relationship between specific model components and the prediction outcome.

References

“Sentiment Analysis of Financial Text Using Quantum Language Processing QDisCoCirc" by Takayuki Sakuma [Submitted on 24 Nov 2025]
https://doi.org/10.48550/arXiv.2511.18804

Podcast Disclaimer

This podcast is an independent production and is not affiliated with or endorsed by any third-party entities unless explicitly stated. The content is for educational and informational purposes only and does not constitute financial, investment, legal, or professional advice. Listeners should consult qualified professionals before making any decisions based on this content.

This episode is based on the references listed above and was generated using Notebook LM and potentially other AI tools. While I have reviewed the content for accuracy, it may still contain errors, inaccuracies, or omissions. Neither the producers nor any affiliates accept liability for any damages or losses arising from the use or interpretation of this content.

  continue reading

31 jaksoa

Artwork
iconJaa
 
Manage episode 522484969 series 3655012
Sisällön tarjoaa kathrynj2. kathrynj2 tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

This episode discusses the research paper, "Hybrid Quantum Circuits for Interpretable Financial Sentiment.” The study applies the Quantum Distributional Compositional Circuit (QDisCoCirc) framework to perform three-class sentiment analysis on financial texts, motivated by the need for greater mechanistic interpretability than offered by traditional Large Language Models. The methodology involves segmenting sentences into short, independent chunks, each generating a semantic Bloch vector representation via classical quantum simulation. To capture syntactic context and word order missed by simple aggregation, the core contribution is a hybrid model that feeds the vector sequence into a shallow Transformer encoder, leveraging Combinatory Categorial Grammar (CCG) type embeddings to explicitly model grammatical structure. This sequence model yields higher predictive performance and allows for the quantitative tracking of contributions from both semantic and syntactic information channels. Finally, the research introduces novel interventional explanation metrics to validate the causal relationship between specific model components and the prediction outcome.

References

“Sentiment Analysis of Financial Text Using Quantum Language Processing QDisCoCirc" by Takayuki Sakuma [Submitted on 24 Nov 2025]
https://doi.org/10.48550/arXiv.2511.18804

Podcast Disclaimer

This podcast is an independent production and is not affiliated with or endorsed by any third-party entities unless explicitly stated. The content is for educational and informational purposes only and does not constitute financial, investment, legal, or professional advice. Listeners should consult qualified professionals before making any decisions based on this content.

This episode is based on the references listed above and was generated using Notebook LM and potentially other AI tools. While I have reviewed the content for accuracy, it may still contain errors, inaccuracies, or omissions. Neither the producers nor any affiliates accept liability for any damages or losses arising from the use or interpretation of this content.

  continue reading

31 jaksoa

Kaikki jaksot

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas

Tekijänoikeudet 2025 | Tietosuojakäytäntö | Käyttöehdot | | Tekijänoikeus
Kuuntele tämä ohjelma tutkiessasi
Toista