Embedded is the show for people who love gadgets. Making them, breaking them, and everything in between. Weekly interviews with engineers, educators, and enthusiasts. Find the show, blog, and more at embedded.fm.
…
continue reading
Sisällön tarjoaa Richard I. Gibson. Richard I. Gibson tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!
Siirry offline-tilaan Player FM avulla!
Episode 390 Mud Volcanoes
MP3•Jakson koti
Manage episode 199638928 series 73321
Sisällön tarjoaa Richard I. Gibson. Richard I. Gibson tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
As the name implies, mud volcanoes are eruptions of mud – not molten rock as in igneous volcanoes. They’re found all around the world, amounting to about a thousand in total number known. The one thing they have in common is hot or at least warm water, so they occur in geothermal areas especially, but they also are found in the Arctic.
They range in size from tiny, just a few meters across and high, to big things that can cover several square miles. In Azerbaijan some mud volcanoes reach 200 meters, 650 feet, in height, and around the world many of them do have conical, volcano-like shapes. But there are others that are just low mounds, more like a shield volcano.
A little (15-cm) mud volcano in New Zealand. Photo by Richard Gibson. |
Mud volcanoes can erupt violently, or seep slowly, and emissions can last from minutes to years. I think it’s fair to think of some of them as geysers in which the water contains a lot of sediment, while others are more like thick, viscous muddy warm springs.
Besides water and fine sediment, mud volcanoes often contain natural gas – most commonly methane, but sometimes carbon dioxide, nitrogen, or other gases. The pressure of these gases is often the driving force behind eruptions, and with a hydrocarbon gas like methane present you might think mud volcanoes would be associated with oil and gas fields, and you’d be right. The hundreds of mud volcanoes in Azerbaijan and in the adjacent Caspian Sea are in the midst of the first great oil province to be exploited, and some of the petroleum deposits there are related to structures in the rocks and sediments caused by the upward force of the mud, which can bend its confining rocks as it rises, just as a salt dome can do. And since methane is flammable, often enough there are flames associated with mud volcanoes. In 2001, near Baku, Azerbaijan, flames shot 15 meters, near 50 feet, into the air. Gobustan in Azerbaijan is a World Heritage Site for its abundant rock carvings dating to 5000 to 20,000 years ago or more. The flaming methane eruptions of mud volcanoes in Azerbaijan have been linked to the development of the Zoroastrian religion, and in fact the name Azerbaijan derives from words meaning Land of the Eternal or Sacred Fire.
The most destructive mud volcano eruption in recent years was on the island of Java, in Indonesia, in May 2006. It erupted in the middle of a rice paddy, and ultimately killed 20 people, caused nearly 3 billion dollars in damage, and displaced 60,000 people. The mud it erupted covers about seven square kilometers, nearly three square miles, and in 2018 it continues to erupt something like 80,000 cubic meters of mud every day – that’s almost 3 million cubic feet, 32 Olympic swimming pools each day.
What caused the violent and extensive eruption of the Lusi Mud Volcano, also called the Sidoarjo mud flow, on Java is not clear. It may be simply part of the ongoing natural tectonic and magmatic processes in the region, which is dotted with many real volcanoes, the kind that carry molten rock to the surface as lava, and there’s a fault system that may provide a conduit for hot water from a volcano about 50 kilometers away. Lusi may be an entirely natural phenomenon. But there are also interesting possible trigger mechanisms. One suggests that a large earthquake two days before the mud volcano erupted changed the plumbing system enough to spur the eruption. That’s reasonable, since we know that earthquakes can have significant effects on geyser systems. Old Faithful in Yellowstone changed its eruption period following the strong Hebgen Lake earthquake in 1959. The other possible trigger is nearby drilling by a gas exploration company, which may have encountered an open pocket of gas or some other feature that ultimately may have allowed enough pressure to build up to make the mud volcano erupt. Good science on all sides of this issue have not resolved its origin with certainty, but on the whole I think the consensus is that the mud eruption was indeed triggered by the drilling. Studies continue, and there are legal cases in progress too, of course.
Another mud volcano that was recently in the news is in Taiwan. Taiwan has at least 17 mud volcanoes which have been known for centuries, and the flammable natural gas associated with them was used in brick-making in southern Taiwan. The gas is probably methane, and it sometimes ignites naturally. The Wandan mud volcano in this area has a sporadic history, dormant for 9 years in the 1980s but erupting with damage in 2011 and 2016. Taiwan is on the subduction zone between the Philippine plate and Eurasia, complicated by a change in orientation of the subduction zone where Taiwan sits. This complex tectonic setting, together with the heat liberated by subduction, is probably the ultimate cause of the earthquakes, geologically recent volcanism, and the mud volcanoes on Taiwan.
Sidoarjo Mud Flow, Indonesia, 2008 NASA image created by Jesse Allen, using data from NASA/GSFC/METI/ERSDAC/JAROS, and the U.S./Japan ASTER Science Team. Caption by Michon Scott, based on interpretation by Geoffrey S. Plumlee, U.S. Geological Survey Crustal Imaging and Characterization Team. Source |
Mud volcano eruptions are probably no more predictable than real volcanoes or earthquakes, but their similarity to geysers might give at least an element of predictability to them. A mud volcano that erupted in Trinidad in February 2018 seems to have a period of about 25 to 30 years, but that’s obviously a pretty wide range. The most recent event at Trinidad’s Devils Woodyard mud volcano covered an area about 100 meters across and tossed mud six meters into the air. Like the features in Azerbaijan, the mud volcanoes in Trinidad are closely associated with hydrocarbon deposits, including Trinidad’s famous pitch lake – thick tarry oil at the surface of the land.
Most of the hot mud activity in Yellowstone isn’t really what you’d call mud volcanoes. It’s more boiling mud-rich hot springs like the Fountain Paint Pots, but every now and then they can make small cones, less than a meter high, and in the past there have been mud-rich geyser eruptions at Yellowstone.
By some estimates there are many more mud volcanoes on the sea floor than there are on land. The known offshore mud volcanoes are often associated with methane hydrates – methane gas frozen into ice in the sediment beneath the sea floor. So it would be no surprise that as those ice-methane complexes melt they might drive the development of mud volcanoes underwater.
—Richard I. Gibson
Links:
16 jaksoa
MP3•Jakson koti
Manage episode 199638928 series 73321
Sisällön tarjoaa Richard I. Gibson. Richard I. Gibson tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
As the name implies, mud volcanoes are eruptions of mud – not molten rock as in igneous volcanoes. They’re found all around the world, amounting to about a thousand in total number known. The one thing they have in common is hot or at least warm water, so they occur in geothermal areas especially, but they also are found in the Arctic.
They range in size from tiny, just a few meters across and high, to big things that can cover several square miles. In Azerbaijan some mud volcanoes reach 200 meters, 650 feet, in height, and around the world many of them do have conical, volcano-like shapes. But there are others that are just low mounds, more like a shield volcano.
A little (15-cm) mud volcano in New Zealand. Photo by Richard Gibson. |
Mud volcanoes can erupt violently, or seep slowly, and emissions can last from minutes to years. I think it’s fair to think of some of them as geysers in which the water contains a lot of sediment, while others are more like thick, viscous muddy warm springs.
Besides water and fine sediment, mud volcanoes often contain natural gas – most commonly methane, but sometimes carbon dioxide, nitrogen, or other gases. The pressure of these gases is often the driving force behind eruptions, and with a hydrocarbon gas like methane present you might think mud volcanoes would be associated with oil and gas fields, and you’d be right. The hundreds of mud volcanoes in Azerbaijan and in the adjacent Caspian Sea are in the midst of the first great oil province to be exploited, and some of the petroleum deposits there are related to structures in the rocks and sediments caused by the upward force of the mud, which can bend its confining rocks as it rises, just as a salt dome can do. And since methane is flammable, often enough there are flames associated with mud volcanoes. In 2001, near Baku, Azerbaijan, flames shot 15 meters, near 50 feet, into the air. Gobustan in Azerbaijan is a World Heritage Site for its abundant rock carvings dating to 5000 to 20,000 years ago or more. The flaming methane eruptions of mud volcanoes in Azerbaijan have been linked to the development of the Zoroastrian religion, and in fact the name Azerbaijan derives from words meaning Land of the Eternal or Sacred Fire.
The most destructive mud volcano eruption in recent years was on the island of Java, in Indonesia, in May 2006. It erupted in the middle of a rice paddy, and ultimately killed 20 people, caused nearly 3 billion dollars in damage, and displaced 60,000 people. The mud it erupted covers about seven square kilometers, nearly three square miles, and in 2018 it continues to erupt something like 80,000 cubic meters of mud every day – that’s almost 3 million cubic feet, 32 Olympic swimming pools each day.
What caused the violent and extensive eruption of the Lusi Mud Volcano, also called the Sidoarjo mud flow, on Java is not clear. It may be simply part of the ongoing natural tectonic and magmatic processes in the region, which is dotted with many real volcanoes, the kind that carry molten rock to the surface as lava, and there’s a fault system that may provide a conduit for hot water from a volcano about 50 kilometers away. Lusi may be an entirely natural phenomenon. But there are also interesting possible trigger mechanisms. One suggests that a large earthquake two days before the mud volcano erupted changed the plumbing system enough to spur the eruption. That’s reasonable, since we know that earthquakes can have significant effects on geyser systems. Old Faithful in Yellowstone changed its eruption period following the strong Hebgen Lake earthquake in 1959. The other possible trigger is nearby drilling by a gas exploration company, which may have encountered an open pocket of gas or some other feature that ultimately may have allowed enough pressure to build up to make the mud volcano erupt. Good science on all sides of this issue have not resolved its origin with certainty, but on the whole I think the consensus is that the mud eruption was indeed triggered by the drilling. Studies continue, and there are legal cases in progress too, of course.
Another mud volcano that was recently in the news is in Taiwan. Taiwan has at least 17 mud volcanoes which have been known for centuries, and the flammable natural gas associated with them was used in brick-making in southern Taiwan. The gas is probably methane, and it sometimes ignites naturally. The Wandan mud volcano in this area has a sporadic history, dormant for 9 years in the 1980s but erupting with damage in 2011 and 2016. Taiwan is on the subduction zone between the Philippine plate and Eurasia, complicated by a change in orientation of the subduction zone where Taiwan sits. This complex tectonic setting, together with the heat liberated by subduction, is probably the ultimate cause of the earthquakes, geologically recent volcanism, and the mud volcanoes on Taiwan.
Sidoarjo Mud Flow, Indonesia, 2008 NASA image created by Jesse Allen, using data from NASA/GSFC/METI/ERSDAC/JAROS, and the U.S./Japan ASTER Science Team. Caption by Michon Scott, based on interpretation by Geoffrey S. Plumlee, U.S. Geological Survey Crustal Imaging and Characterization Team. Source |
Mud volcano eruptions are probably no more predictable than real volcanoes or earthquakes, but their similarity to geysers might give at least an element of predictability to them. A mud volcano that erupted in Trinidad in February 2018 seems to have a period of about 25 to 30 years, but that’s obviously a pretty wide range. The most recent event at Trinidad’s Devils Woodyard mud volcano covered an area about 100 meters across and tossed mud six meters into the air. Like the features in Azerbaijan, the mud volcanoes in Trinidad are closely associated with hydrocarbon deposits, including Trinidad’s famous pitch lake – thick tarry oil at the surface of the land.
Most of the hot mud activity in Yellowstone isn’t really what you’d call mud volcanoes. It’s more boiling mud-rich hot springs like the Fountain Paint Pots, but every now and then they can make small cones, less than a meter high, and in the past there have been mud-rich geyser eruptions at Yellowstone.
By some estimates there are many more mud volcanoes on the sea floor than there are on land. The known offshore mud volcanoes are often associated with methane hydrates – methane gas frozen into ice in the sediment beneath the sea floor. So it would be no surprise that as those ice-methane complexes melt they might drive the development of mud volcanoes underwater.
—Richard I. Gibson
Links:
16 jaksoa
Toate episoadele
×Tervetuloa Player FM:n!
Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.