Artwork

Sisällön tarjoaa Machine Learning Archives - Software Engineering Daily. Machine Learning Archives - Software Engineering Daily tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

OctoML: Automated Deep Learning Engineering with Jason Knight and Luis Ceze

53:43
 
Jaa
 

Manage episode 284523704 series 1433944
Sisällön tarjoaa Machine Learning Archives - Software Engineering Daily. Machine Learning Archives - Software Engineering Daily tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

The incredible advances in machine learning research in recent years often take time to propagate out into usage in the field. One reason for this is that such “state-of-the-art” results for machine learning performance rely on the use of handwritten, idiosyncratic optimizations for specific hardware models or operating contexts. When developers are building ML-powered systems to deploy in the cloud and at the edge, their goals to ensure the model delivers the best possible functionality and end-user experience- and importantly, their hardware and software stack may require different optimizations to achieve that goal.

OctoML provides a SaaS product called the Octomizer to help developers and AIOps teams deploy ML models most efficiently on any hardware, in any context. The Octomizer deploys its own ML models to analyze your model topology, and optimize, benchmark, and package the model for deployment. The Octomizer generates insights about model performance over different hardware stacks and helps you choose the deployment format that works best for your organization.

Luis Ceze is the Co-Founder and CEO of OctoML. Luis is a founder of the ApacheTVM project, which is the basis for OctoML’s technology. He is also a professor of Computer Science at the University of Washington. Jason Knight is co-founder and CPO at OctoML. Luis and Jason join the show today to talk about how OctoML is automating deep learning engineering, why it’s so important to consider hardware when building deep learning systems, and how the field of deep learning is evolving.

Sponsorship inquiries: [email protected]

The post OctoML: Automated Deep Learning Engineering with Jason Knight and Luis Ceze appeared first on Software Engineering Daily.

  continue reading

176 jaksoa

Artwork
iconJaa
 
Manage episode 284523704 series 1433944
Sisällön tarjoaa Machine Learning Archives - Software Engineering Daily. Machine Learning Archives - Software Engineering Daily tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

The incredible advances in machine learning research in recent years often take time to propagate out into usage in the field. One reason for this is that such “state-of-the-art” results for machine learning performance rely on the use of handwritten, idiosyncratic optimizations for specific hardware models or operating contexts. When developers are building ML-powered systems to deploy in the cloud and at the edge, their goals to ensure the model delivers the best possible functionality and end-user experience- and importantly, their hardware and software stack may require different optimizations to achieve that goal.

OctoML provides a SaaS product called the Octomizer to help developers and AIOps teams deploy ML models most efficiently on any hardware, in any context. The Octomizer deploys its own ML models to analyze your model topology, and optimize, benchmark, and package the model for deployment. The Octomizer generates insights about model performance over different hardware stacks and helps you choose the deployment format that works best for your organization.

Luis Ceze is the Co-Founder and CEO of OctoML. Luis is a founder of the ApacheTVM project, which is the basis for OctoML’s technology. He is also a professor of Computer Science at the University of Washington. Jason Knight is co-founder and CPO at OctoML. Luis and Jason join the show today to talk about how OctoML is automating deep learning engineering, why it’s so important to consider hardware when building deep learning systems, and how the field of deep learning is evolving.

Sponsorship inquiries: [email protected]

The post OctoML: Automated Deep Learning Engineering with Jason Knight and Luis Ceze appeared first on Software Engineering Daily.

  continue reading

176 jaksoa

Kaikki jaksot

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas

Tekijänoikeudet 2025 | Tietosuojakäytäntö | Käyttöehdot | | Tekijänoikeus
Kuuntele tämä ohjelma tutkiessasi
Toista