Artwork

Sisällön tarjoaa Ludwig-Maximilians-Universität München and MCMP Team. Ludwig-Maximilians-Universität München and MCMP Team tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

Remarks on the foundations of mathematics

1:31:37
 
Jaa
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117473 series 2929680
Sisällön tarjoaa Ludwig-Maximilians-Universität München and MCMP Team. Ludwig-Maximilians-Universität München and MCMP Team tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Helmut Schwichtenberg (LMU) gives a talk at the MCMP Colloquium (5 December, 2013) titled "Remarks on the foundations of mathematics". Abstract: We consider minimal logic with implication and universal quantification over (typed) object variables. Free type and predicate parameters may occur. For mathematics we need (i) data (the Scott - Ershov partial continuous functionals) and (ii) predicates (defined inductively or coinductively). In this setting we can define (Leibniz) equality, falsity and the missing logical connectives (negation, disjunction, existential quantification, conjunction). Ex-falso-quodlibet can be proved. Using Kreisel's (modified) realizability we can (even practically) extract computational content from proofs, and (internally) prove soundness.
  continue reading

22 jaksoa

Artwork
iconJaa
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117473 series 2929680
Sisällön tarjoaa Ludwig-Maximilians-Universität München and MCMP Team. Ludwig-Maximilians-Universität München and MCMP Team tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Helmut Schwichtenberg (LMU) gives a talk at the MCMP Colloquium (5 December, 2013) titled "Remarks on the foundations of mathematics". Abstract: We consider minimal logic with implication and universal quantification over (typed) object variables. Free type and predicate parameters may occur. For mathematics we need (i) data (the Scott - Ershov partial continuous functionals) and (ii) predicates (defined inductively or coinductively). In this setting we can define (Leibniz) equality, falsity and the missing logical connectives (negation, disjunction, existential quantification, conjunction). Ex-falso-quodlibet can be proved. Using Kreisel's (modified) realizability we can (even practically) extract computational content from proofs, and (internally) prove soundness.
  continue reading

22 jaksoa

ทุกตอน

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas