Artwork

Sisällön tarjoaa Demetrios Brinkmann. Demetrios Brinkmann tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

Unpacking 3 Types of Feature Stores // Simba Khadder // #265

1:07:42
 
Jaa
 

Manage episode 442982229 series 3241972
Sisällön tarjoaa Demetrios Brinkmann. Demetrios Brinkmann tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Simba Khadder is the Founder & CEO of Featureform. He started his ML career in recommender systems where he architected a multi-modal personalization engine that powered 100s of millions of user’s experiences. Unpacking 3 Types of Feature Stores // MLOps Podcast #265 with Simba Khadder, Founder & CEO of Featureform. // Abstract Simba dives into how feature stores have evolved and how they now intersect with vector stores, especially in the world of machine learning and LLMs. He breaks down what embeddings are, how they power recommender systems, and why personalization is key to improving LLM prompts. Simba also sheds light on the difference between feature and vector stores, explaining how each plays its part in making ML workflows smoother. Plus, we get into the latest challenges and cool innovations happening in MLOps. // Bio Simba Khadder is the Founder & CEO of Featureform. After leaving Google, Simba founded his first company, TritonML. His startup grew quickly and Simba and his team built ML infrastructure that handled over 100M monthly active users. He instilled his learnings into Featureform’s virtual feature store. Featureform turns your existing infrastructure into a Feature Store. He’s also an avid surfer, a mixed martial artist, a published astrophysicist for his work on finding Planet 9, and he ran the SF marathon in basketball shoes. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: featureform.comBigQuery Feature Store // Nicolas Mauti // MLOps Podcast #255: https://www.youtube.com/watch?v=NtDKbGyRHXQ&ab_channel=MLOps.community --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Simba on LinkedIn: https://www.linkedin.com/in/simba-k/ Timestamps: [00:00] Simba's preferred coffee [00:08] Takeaways [02:01] Coining the term 'Embedding' [07:10] Dual Tower Recommender System [10:06] Complexity vs Reliability in AI [12:39] Vector Stores and Feature Stores [17:56] Value of Data Scientists [20:27] Scalability vs Quick Solutions [23:07] MLOps vs LLMOps Debate [24:12] Feature Stores' current landscape [32:02] ML lifecycle challenges and tools [36:16] Feature Stores bundling impact [42:13] Feature Stores and BigQuery [47:42] Virtual vs Literal Feature Store [50:13] Hadoop Community Challenges [52:46] LLM data lifecycle challenges [56:30] Personalization in prompting usage [59:09] Contextualizing company variables [1:03:10] DSPy framework adoption insights [1:05:25] Wrap up

  continue reading

399 jaksoa

Artwork
iconJaa
 
Manage episode 442982229 series 3241972
Sisällön tarjoaa Demetrios Brinkmann. Demetrios Brinkmann tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Simba Khadder is the Founder & CEO of Featureform. He started his ML career in recommender systems where he architected a multi-modal personalization engine that powered 100s of millions of user’s experiences. Unpacking 3 Types of Feature Stores // MLOps Podcast #265 with Simba Khadder, Founder & CEO of Featureform. // Abstract Simba dives into how feature stores have evolved and how they now intersect with vector stores, especially in the world of machine learning and LLMs. He breaks down what embeddings are, how they power recommender systems, and why personalization is key to improving LLM prompts. Simba also sheds light on the difference between feature and vector stores, explaining how each plays its part in making ML workflows smoother. Plus, we get into the latest challenges and cool innovations happening in MLOps. // Bio Simba Khadder is the Founder & CEO of Featureform. After leaving Google, Simba founded his first company, TritonML. His startup grew quickly and Simba and his team built ML infrastructure that handled over 100M monthly active users. He instilled his learnings into Featureform’s virtual feature store. Featureform turns your existing infrastructure into a Feature Store. He’s also an avid surfer, a mixed martial artist, a published astrophysicist for his work on finding Planet 9, and he ran the SF marathon in basketball shoes. // MLOps Jobs board https://mlops.pallet.xyz/jobs // MLOps Swag/Merch https://mlops-community.myshopify.com/ // Related Links Website: featureform.comBigQuery Feature Store // Nicolas Mauti // MLOps Podcast #255: https://www.youtube.com/watch?v=NtDKbGyRHXQ&ab_channel=MLOps.community --------------- ✌️Connect With Us ✌️ ------------- Join our slack community: https://go.mlops.community/slack Follow us on Twitter: @mlopscommunity Sign up for the next meetup: https://go.mlops.community/register Catch all episodes, blogs, newsletters, and more: https://mlops.community/ Connect with Demetrios on LinkedIn: https://www.linkedin.com/in/dpbrinkm/ Connect with Simba on LinkedIn: https://www.linkedin.com/in/simba-k/ Timestamps: [00:00] Simba's preferred coffee [00:08] Takeaways [02:01] Coining the term 'Embedding' [07:10] Dual Tower Recommender System [10:06] Complexity vs Reliability in AI [12:39] Vector Stores and Feature Stores [17:56] Value of Data Scientists [20:27] Scalability vs Quick Solutions [23:07] MLOps vs LLMOps Debate [24:12] Feature Stores' current landscape [32:02] ML lifecycle challenges and tools [36:16] Feature Stores bundling impact [42:13] Feature Stores and BigQuery [47:42] Virtual vs Literal Feature Store [50:13] Hadoop Community Challenges [52:46] LLM data lifecycle challenges [56:30] Personalization in prompting usage [59:09] Contextualizing company variables [1:03:10] DSPy framework adoption insights [1:05:25] Wrap up

  continue reading

399 jaksoa

כל הפרקים

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas

Kuuntele tämä ohjelma tutkiessasi
Toista