Artwork

Sisällön tarjoaa NLP Highlights and Allen Institute for Artificial Intelligence. NLP Highlights and Allen Institute for Artificial Intelligence tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

129 - Transformers and Hierarchical Structure, with Shunyu Yao

35:43
 
Jaa
 

Manage episode 296551674 series 1452120
Sisällön tarjoaa NLP Highlights and Allen Institute for Artificial Intelligence. NLP Highlights and Allen Institute for Artificial Intelligence tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
In this episode, we talk to Shunyu Yao about recent insights into how transformers can represent hierarchical structure in language. Bounded-depth hierarchical structure is thought to be a key feature of natural languages, motivating Shunyu and his coauthors to show that transformers can efficiently represent bounded-depth Dyck languages, which can be thought of as a formal model of the structure of natural languages. We went on to discuss some of the intuitive ideas that emerge from the proofs, connections to RNNs, and insights about positional encodings that may have practical implications. More broadly, we also touched on the role of formal languages and other theoretical tools in modern NLP. Papers discussed in this episode: - Self-Attention Networks Can Process Bounded Hierarchical Languages (https://arxiv.org/abs/2105.11115) - Theoretical Limitations of Self-Attention in Neural Sequence Models (https://arxiv.org/abs/1906.06755) - RNNs can generate bounded hierarchical languages with optimal memory (https://arxiv.org/abs/2010.07515) - On the Practical Computational Power of Finite Precision RNNs for Language Recognition (https://arxiv.org/abs/1805.04908) Shunyu Yao's webpage: https://ysymyth.github.io/ The hosts for this episode are William Merrill and Matt Gardner.
  continue reading

145 jaksoa

Artwork
iconJaa
 
Manage episode 296551674 series 1452120
Sisällön tarjoaa NLP Highlights and Allen Institute for Artificial Intelligence. NLP Highlights and Allen Institute for Artificial Intelligence tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
In this episode, we talk to Shunyu Yao about recent insights into how transformers can represent hierarchical structure in language. Bounded-depth hierarchical structure is thought to be a key feature of natural languages, motivating Shunyu and his coauthors to show that transformers can efficiently represent bounded-depth Dyck languages, which can be thought of as a formal model of the structure of natural languages. We went on to discuss some of the intuitive ideas that emerge from the proofs, connections to RNNs, and insights about positional encodings that may have practical implications. More broadly, we also touched on the role of formal languages and other theoretical tools in modern NLP. Papers discussed in this episode: - Self-Attention Networks Can Process Bounded Hierarchical Languages (https://arxiv.org/abs/2105.11115) - Theoretical Limitations of Self-Attention in Neural Sequence Models (https://arxiv.org/abs/1906.06755) - RNNs can generate bounded hierarchical languages with optimal memory (https://arxiv.org/abs/2010.07515) - On the Practical Computational Power of Finite Precision RNNs for Language Recognition (https://arxiv.org/abs/1805.04908) Shunyu Yao's webpage: https://ysymyth.github.io/ The hosts for this episode are William Merrill and Matt Gardner.
  continue reading

145 jaksoa

Tutti gli episodi

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas

Kuuntele tämä ohjelma tutkiessasi
Toista