Artwork

Sisällön tarjoaa The Data Flowcast. The Data Flowcast tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

Optimizing Large-Scale Deployments at LinkedIn with Rahul Gade

27:47
 
Jaa
 

Manage episode 453266231 series 2948506
Sisällön tarjoaa The Data Flowcast. The Data Flowcast tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Scaling deployments for a billion users demands innovation, precision and resilience. In this episode, we dive into how LinkedIn optimizes its continuous deployment process using Apache Airflow. Rahul Gade, Staff Software Engineer at LinkedIn, shares his insights on building scalable systems and democratizing deployments for over 10,000 engineers.

Rahul discusses the challenges of managing large-scale deployments across 6,000 services and how his team leverages Airflow to enhance efficiency, reliability and user accessibility.

Key Takeaways:

(01:36) LinkedIn minimizes human involvement in production to reduce errors.

(02:00) Airflow powers LinkedIn’s Continuous Deployment platform.

(05:43) Continuous deployment adoption grew from 8% to a targeted 80%.

(11:25) Kubernetes ensures scalability and flexibility for deployments.

(12:04) A custom UI offers real-time deployment transparency.

(16:23) No-code YAML workflows simplify deployment tasks.

(17:18) Canaries and metrics ensure safe deployments across fabrics.

(20:45) A gateway service ensures redundancy across Airflow clusters.

(24:22) Abstractions let engineers focus on development, not logistics.

(25:20) Multi-language support in Airflow 3.0 simplifies adoption.

Resources Mentioned:

Rahul Gade -

https://www.linkedin.com/in/rahul-gade-68666818/

LinkedIn -

https://www.linkedin.com/company/linkedin/

Apache Airflow -

https://airflow.apache.org/

Kubernetes -

https://kubernetes.io/

Open Policy Agent (OPA) -

https://www.openpolicyagent.org/

Backstage -

https://backstage.io/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

36 jaksoa

Artwork
iconJaa
 
Manage episode 453266231 series 2948506
Sisällön tarjoaa The Data Flowcast. The Data Flowcast tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

Scaling deployments for a billion users demands innovation, precision and resilience. In this episode, we dive into how LinkedIn optimizes its continuous deployment process using Apache Airflow. Rahul Gade, Staff Software Engineer at LinkedIn, shares his insights on building scalable systems and democratizing deployments for over 10,000 engineers.

Rahul discusses the challenges of managing large-scale deployments across 6,000 services and how his team leverages Airflow to enhance efficiency, reliability and user accessibility.

Key Takeaways:

(01:36) LinkedIn minimizes human involvement in production to reduce errors.

(02:00) Airflow powers LinkedIn’s Continuous Deployment platform.

(05:43) Continuous deployment adoption grew from 8% to a targeted 80%.

(11:25) Kubernetes ensures scalability and flexibility for deployments.

(12:04) A custom UI offers real-time deployment transparency.

(16:23) No-code YAML workflows simplify deployment tasks.

(17:18) Canaries and metrics ensure safe deployments across fabrics.

(20:45) A gateway service ensures redundancy across Airflow clusters.

(24:22) Abstractions let engineers focus on development, not logistics.

(25:20) Multi-language support in Airflow 3.0 simplifies adoption.

Resources Mentioned:

Rahul Gade -

https://www.linkedin.com/in/rahul-gade-68666818/

LinkedIn -

https://www.linkedin.com/company/linkedin/

Apache Airflow -

https://airflow.apache.org/

Kubernetes -

https://kubernetes.io/

Open Policy Agent (OPA) -

https://www.openpolicyagent.org/

Backstage -

https://backstage.io/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

36 jaksoa

Kaikki jaksot

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas