Artwork

Sisällön tarjoaa TWIML and Sam Charrington. TWIML and Sam Charrington tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

Closing the Loop Between AI Training and Inference with Lin Qiao - #742

1:01:11
 
Jaa
 

Manage episode 499835346 series 2355587
Sisällön tarjoaa TWIML and Sam Charrington. TWIML and Sam Charrington tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

In this episode, we're joined by Lin Qiao, CEO and co-founder of Fireworks AI. Drawing on key lessons from her time building PyTorch, Lin shares her perspective on the modern generative AI development lifecycle. She explains why aligning training and inference systems is essential for creating a seamless, fast-moving production pipeline, preventing the friction that often stalls deployment. We explore the strategic shift from treating models as commodities to viewing them as core product assets. Lin details how post-training methods, like reinforcement fine-tuning (RFT), allow teams to leverage their own proprietary data to continuously improve these assets. Lin also breaks down the complex challenge of what she calls "3D optimization"—balancing cost, latency, and quality—and emphasizes the role of clear evaluation criteria to guide this process, moving beyond unreliable methods like "vibe checking." Finally, we discuss the path toward the future of AI development: designing a closed-loop system for automated model improvement, a vision made more attainable by the exciting convergence of open and closed-source model capabilities.

The complete show notes for this episode can be found at https://twimlai.com/go/742.

  continue reading

779 jaksoa

Artwork
iconJaa
 
Manage episode 499835346 series 2355587
Sisällön tarjoaa TWIML and Sam Charrington. TWIML and Sam Charrington tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

In this episode, we're joined by Lin Qiao, CEO and co-founder of Fireworks AI. Drawing on key lessons from her time building PyTorch, Lin shares her perspective on the modern generative AI development lifecycle. She explains why aligning training and inference systems is essential for creating a seamless, fast-moving production pipeline, preventing the friction that often stalls deployment. We explore the strategic shift from treating models as commodities to viewing them as core product assets. Lin details how post-training methods, like reinforcement fine-tuning (RFT), allow teams to leverage their own proprietary data to continuously improve these assets. Lin also breaks down the complex challenge of what she calls "3D optimization"—balancing cost, latency, and quality—and emphasizes the role of clear evaluation criteria to guide this process, moving beyond unreliable methods like "vibe checking." Finally, we discuss the path toward the future of AI development: designing a closed-loop system for automated model improvement, a vision made more attainable by the exciting convergence of open and closed-source model capabilities.

The complete show notes for this episode can be found at https://twimlai.com/go/742.

  continue reading

779 jaksoa

सभी एपिसोड

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas

Tekijänoikeudet 2025 | Tietosuojakäytäntö | Käyttöehdot | | Tekijänoikeus
Kuuntele tämä ohjelma tutkiessasi
Toista