Siirry offline-tilaan Player FM avulla!
Powering AI with the World's Largest Computer Chip with Joel Hestness - #684
Manage episode 418091008 series 2355587
Today we're joined by Joel Hestness, principal research scientist and lead of the core machine learning team at Cerebras. We discuss Cerebras’ custom silicon for machine learning, Wafer Scale Engine 3, and how the latest version of the company’s single-chip platform for ML has evolved to support large language models. Joel shares how WSE3 differs from other AI hardware solutions, such as GPUs, TPUs, and AWS’ Inferentia, and talks through the homogenous design of the WSE chip and its memory architecture. We discuss software support for the platform, including support by open source ML frameworks like Pytorch, and support for different types of transformer-based models. Finally, Joel shares some of the research his team is pursuing to take advantage of the hardware's unique characteristics, including weight-sparse training, optimizers that leverage higher-order statistics, and more.
The complete show notes for this episode can be found at twimlai.com/go/684.
728 jaksoa
Powering AI with the World's Largest Computer Chip with Joel Hestness - #684
The TWIML AI Podcast (formerly This Week in Machine Learning & Artificial Intelligence)
Manage episode 418091008 series 2355587
Today we're joined by Joel Hestness, principal research scientist and lead of the core machine learning team at Cerebras. We discuss Cerebras’ custom silicon for machine learning, Wafer Scale Engine 3, and how the latest version of the company’s single-chip platform for ML has evolved to support large language models. Joel shares how WSE3 differs from other AI hardware solutions, such as GPUs, TPUs, and AWS’ Inferentia, and talks through the homogenous design of the WSE chip and its memory architecture. We discuss software support for the platform, including support by open source ML frameworks like Pytorch, and support for different types of transformer-based models. Finally, Joel shares some of the research his team is pursuing to take advantage of the hardware's unique characteristics, including weight-sparse training, optimizers that leverage higher-order statistics, and more.
The complete show notes for this episode can be found at twimlai.com/go/684.
728 jaksoa
Alle episoder
×Tervetuloa Player FM:n!
Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.