Artwork

Sisällön tarjoaa HackerNoon. HackerNoon tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

Orca 2: Enhancing Reasoning in Smaller Language Models - Technical Details

8:48
 
Jaa
 

Manage episode 421181730 series 3474159
Sisällön tarjoaa HackerNoon. HackerNoon tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

This story was originally published on HackerNoon at: https://hackernoon.com/orca-2-enhancing-reasoning-in-smaller-language-models-technical-details.
Orca 2 enhances small language models' reasoning by teaching diverse strategies for tasks, outperforming models up to 10x larger in complex benchmarks.
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #language-models, #orca-2, #reasoning-techniques, #machine-learning, #small-models, #imitation-learning, #ai-benchmarks, #model-training, and more.
This story was written by: @textmodels. Learn more about this writer by checking @textmodels's about page, and for more stories, please visit hackernoon.com.
The Orca 2 dataset has four main sources:FLAN: Our main source of prompts for synthetic data generation is the FLAN-v2 Collection 33, which consists of five sub-collections. Following Orca 1 42, we consider tasks from only CoT, NiV2, T0, Flan 2021 and Dialogue. Some of the tasks are associated with an associated answer. For the Cautious Reasoning dataset we selected ~602 zero-shot user queries from the split of 1448 high quality tasks out of 1913.

  continue reading

469 jaksoa

Artwork
iconJaa
 
Manage episode 421181730 series 3474159
Sisällön tarjoaa HackerNoon. HackerNoon tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

This story was originally published on HackerNoon at: https://hackernoon.com/orca-2-enhancing-reasoning-in-smaller-language-models-technical-details.
Orca 2 enhances small language models' reasoning by teaching diverse strategies for tasks, outperforming models up to 10x larger in complex benchmarks.
Check more stories related to programming at: https://hackernoon.com/c/programming. You can also check exclusive content about #language-models, #orca-2, #reasoning-techniques, #machine-learning, #small-models, #imitation-learning, #ai-benchmarks, #model-training, and more.
This story was written by: @textmodels. Learn more about this writer by checking @textmodels's about page, and for more stories, please visit hackernoon.com.
The Orca 2 dataset has four main sources:FLAN: Our main source of prompts for synthetic data generation is the FLAN-v2 Collection 33, which consists of five sub-collections. Following Orca 1 42, we consider tasks from only CoT, NiV2, T0, Flan 2021 and Dialogue. Some of the tasks are associated with an associated answer. For the Cautious Reasoning dataset we selected ~602 zero-shot user queries from the split of 1448 high quality tasks out of 1913.

  continue reading

469 jaksoa

كل الحلقات

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas

Tekijänoikeudet 2025 | Tietosuojakäytäntö | Käyttöehdot | | Tekijänoikeus
Kuuntele tämä ohjelma tutkiessasi
Toista