Artwork

Sisällön tarjoaa Real Python. Real Python tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.
Player FM - Podcast-sovellus
Siirry offline-tilaan Player FM avulla!

Measuring Multiple Facets of Python Performance With Scalene

1:03:42
 
Jaa
 

Manage episode 377044868 series 2637014
Sisällön tarjoaa Real Python. Real Python tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

When choosing a tool for profiling Python code performance, should it focus on the CPU, GPU, memory, or individual lines of code? What if it looked at all those factors and didn’t alter code performance while measuring it? This week on the show, we talk about Scalene with Emery Berger, Professor of Computer Science at the University of Massachusetts Amherst.

Emery talks about his background in memory management and his collaboration on Hoard, a scalable memory manager system used in Mac OS X. We discuss the need for improving code performance on modern computer architecture. He highlights this idea by contrasting the familiar limitations of Moore’s law with the lesser-known rule of Dennard scaling.

Working with his students in the university lab, they developed Scalene. Scalene is a high-performance CPU, GPU, and memory profiler. It can look at code from the individual function or line-by-line level and compare time spent in Python vs C code. Emery talks about the recent Scalene feature of AI-powered optimization proposals and covers a couple of examples. He also shares a collection of additional Python code-assistant tools from their lab.

Course Spotlight: What Does if name == “main” Mean in Python?

In this video course, you’ll learn all about Python’s name-main idiom. You’ll learn what it does in Python, how it works, when to use it, when to avoid it, and how to refer to it.

Topics:

  • 00:00:00 – Introduction
  • 00:02:13 – College of Information and Computer Sciences
  • 00:03:25 – Memory management systems background
  • 00:05:15 – Dennard Scaling vs Moore’s Law
  • 00:10:12 – Starting work on Python profiling
  • 00:15:00 – Deciding on a statistical profiler
  • 00:17:05 – Wanting to trace memory
  • 00:21:21 – Finding memory issues
  • 00:23:59 – Line-by-line analysis
  • 00:25:56 – Video Course Spotlight
  • 00:27:14 – Measuring profiler performance
  • 00:30:30 – Memory leak detection
  • 00:34:31 – When should you run a profiler?
  • 00:37:27 – Considerations for measuring cloud performance
  • 00:39:12 – Working with Jupyter and Conda
  • 00:42:18 – Common issues and AI solutions
  • 00:45:50 – Using a profiler to learn a codebase
  • 00:50:48 – Examples of AI-powered optimizations
  • 00:55:50 – What are you excited about in the world of Python?
  • 00:58:30 – What do you want to learn next?
  • 01:01:48 – How can people follow your work online?
  • 01:02:56 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

277 jaksoa

Artwork
iconJaa
 
Manage episode 377044868 series 2637014
Sisällön tarjoaa Real Python. Real Python tai sen podcast-alustan kumppani lataa ja toimittaa kaiken podcast-sisällön, mukaan lukien jaksot, grafiikat ja podcast-kuvaukset. Jos uskot jonkun käyttävän tekijänoikeudella suojattua teostasi ilman lupaasi, voit seurata tässä https://fi.player.fm/legal kuvattua prosessia.

When choosing a tool for profiling Python code performance, should it focus on the CPU, GPU, memory, or individual lines of code? What if it looked at all those factors and didn’t alter code performance while measuring it? This week on the show, we talk about Scalene with Emery Berger, Professor of Computer Science at the University of Massachusetts Amherst.

Emery talks about his background in memory management and his collaboration on Hoard, a scalable memory manager system used in Mac OS X. We discuss the need for improving code performance on modern computer architecture. He highlights this idea by contrasting the familiar limitations of Moore’s law with the lesser-known rule of Dennard scaling.

Working with his students in the university lab, they developed Scalene. Scalene is a high-performance CPU, GPU, and memory profiler. It can look at code from the individual function or line-by-line level and compare time spent in Python vs C code. Emery talks about the recent Scalene feature of AI-powered optimization proposals and covers a couple of examples. He also shares a collection of additional Python code-assistant tools from their lab.

Course Spotlight: What Does if name == “main” Mean in Python?

In this video course, you’ll learn all about Python’s name-main idiom. You’ll learn what it does in Python, how it works, when to use it, when to avoid it, and how to refer to it.

Topics:

  • 00:00:00 – Introduction
  • 00:02:13 – College of Information and Computer Sciences
  • 00:03:25 – Memory management systems background
  • 00:05:15 – Dennard Scaling vs Moore’s Law
  • 00:10:12 – Starting work on Python profiling
  • 00:15:00 – Deciding on a statistical profiler
  • 00:17:05 – Wanting to trace memory
  • 00:21:21 – Finding memory issues
  • 00:23:59 – Line-by-line analysis
  • 00:25:56 – Video Course Spotlight
  • 00:27:14 – Measuring profiler performance
  • 00:30:30 – Memory leak detection
  • 00:34:31 – When should you run a profiler?
  • 00:37:27 – Considerations for measuring cloud performance
  • 00:39:12 – Working with Jupyter and Conda
  • 00:42:18 – Common issues and AI solutions
  • 00:45:50 – Using a profiler to learn a codebase
  • 00:50:48 – Examples of AI-powered optimizations
  • 00:55:50 – What are you excited about in the world of Python?
  • 00:58:30 – What do you want to learn next?
  • 01:01:48 – How can people follow your work online?
  • 01:02:56 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

277 jaksoa

Усі епізоди

×
 
Loading …

Tervetuloa Player FM:n!

Player FM skannaa verkkoa löytääkseen korkealaatuisia podcasteja, joista voit nauttia juuri nyt. Se on paras podcast-sovellus ja toimii Androidilla, iPhonela, ja verkossa. Rekisteröidy sykronoidaksesi tilaukset laitteiden välillä.

 

Pikakäyttöopas

Tekijänoikeudet 2025 | Tietosuojakäytäntö | Käyttöehdot | | Tekijänoikeus
Kuuntele tämä ohjelma tutkiessasi
Toista